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TRIN. CBLIQUE AIRFOILS AT SUPPEEISCNIC SPEED 

By Robert T.,Jonea 

The well-known methods of thin-airfoil theory have 
been extended to ob‘lique or swept-back airfoils of finite 
aspect ratio moving at supe3sonic speeds. The cases con- 
sidered thus far' are symmetrical arrfsils at zero lift 
having plan foms bounded by straight lines. Because of 
the conical form of the elementary flow fields the results 
tire comparable izl simplfcitg to the results of the two- 
dImensiona thin-airfoil theory for subsonic speeds. 

In the case of untapered airfoils swept back behind 
the Mach con8 the pressure distribution at the center 
section is si.~ilar to that given by the Ackeret theory 
for a straight airfoil. Nlth increasing distance from 
the center sectFon the distribution approaches the form 
given by th8 subsonic-flow theory. The pressure drag is 
concentratad -chiefly at the center section and for long 
wings a sligTht negative drag may appear on outboard sec- 
tlons. 

INTRCDUCTICN 

In reference 1 it was pointed 
of an itiinite cylindrical airfoil 

out that the wave drag 
tiaappears when the - airfoil %s yaW8d to an angle greater than the Mach angle. 

Thfa observation led to the conclusion that the drag of 
a finite aIrfoIl could be greatly reduced by the use of 
sufffcient sweepback. With such a swept-back wing the 
wave drag would be associated with departures from the 
ideal two-dimenSiona flOW at the root or %ip SeCtiOAS 
and would thus be a function of the aspect ratio. The 
present report extends the theory of reference 1 to take 
account of these effects. 



The treatment is based on the theory of small dis- 
turbances in a frictionless com?CesslbJ.e fluid. The -: 
ideallzzd fluid and its ..eyuaticms of motion are iS.entic&J. 
with those employed in acoustics In the theory of sound 
maves of smell amplitude. The application of the theory 
j:s thus limited to.@odiirs having thin cross sections so 
.hat the oeloc1ty &. motion Imparted to the f'luld ia smsll 
rslztiva to the velocity of sound and so that the prea- 
sure disturbances produced are-small relative to the 
ambient pressure. -. 

i?.~e adaptation of the sound-wauo theory to the aoro- 
dynamics of moving bodies was suggested mung years ago 
by Prandtl. The thecry was aor>lied by Ackcret (rei'er- 
ence 2) to th3x airfoils moviCg at supersonic sp8od. 
&:roretts treatment is ltiite'd, however, to infinitely 
J.oxp~ cylindrical airfoi3-s moving~transveraaly. The 
-aresent theory may bo.considered an extansion olc' -4ckeretrs 
theory to take into account Mnss of fini,ce span and wings 
having tapered or swapt-back plan forms. In the cm6 or 
snOpt-back >lan forms the results are markedly different 
from thoss obtained by the Ackoret theory and approach 
the v.luss indicated in references 1 and 3. 

In reference 4 Rusemann doecribes a method for cal- 
CUbtblK the YUJ?WSOlliC 
COd.CdprGSSUX field. 

flovr ovzr bodies which produce a 
Bussmann ahoTs that the flow 

arOund cones ef circular cross sections as rioI. as the 
i'low around the tip of,a rectangular lifting sui3aco 
satisfim thfa con‘liitfon. Tha fact that a groat variety 
of three-dfmensfotial flo:vs can be constructed bp the 
su:xrposition of conS-cal 2nd c:~lindrfcsl flow fields 
Leads to an cssontial sim;~li.fication of Cyho airfoil 
theory at s~g1ersoti3.e ipeods. 

_ 
Yhc prea311 

C. 
t -treatment differs frcm E3usemann~s in 

that It Is further limited to flat bodies, that la, 
bodies ~Mch are +&in in Sot& lor;_&iitu&hal and transvsrso 
aectfons l This additionel restrIction leads to a much 
simnler mat.hematical treatment and one %;hich is ap?licBble 
to a wide variety of airfoil shapes. In a pa3por ?rosontod 
before the Institute of Aoron%utical Scfances Allsn E. 
Fuckett also treats symmetrical nOn-Tufting bodies. 
Puckett's method makss ute of inte.Tral axpressions corre- 
spondinq to tho velocity notential of plane-source distri- 
bution. 

'J.!.+th Annual Me,=tinq, Nest York, January 29, lgik6. 
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well .-known linearized equation for the velocity poten- 
t-l4 $ (see reference 5) 

( l- N2)gxx + @y-y + @ze = 0 (1) 

The analysis is simplified by introducing the coordinates 

xI =X 

Y1 = i-- 
ML --1 y 

z1 - I,‘ 1 
-\M2- 12 

(2) 

Dropping the subscripts from the transformed coordinates 
gives 

(3) 

According to the thin-airfoil theory the pressures 
on the tr‘ansformed airfoil WE, ,Tivan bv 

dz and the slope of the airfoil surface .s. is equal to the 
slope of the streamlines near the chord Diane; that is, 

t 

. 
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The elementary solution of 
source is 

1107 

equation (3) for a point 

This solution is directly related to the subsonic poten- 
tial 

Tin the subsonic case the equipotential surfaces are, however, 
ellipsoids,whereas in the supersonic case the equipo- 
tential surfaces are hyperboloids limtted by the L!ach 
cone. (See reference 5 for the derivation of these ele- 
mentary solutfons.) 

Because of t'ne linearity of equation (I) a solut.ion 
may be used to denote one of the velocity components 
rather than the velocity potential. The specification 
of one component in this manner actually describes the 
whole flow field since the other components may be obtained 
IF integrattng tine given component to obtain the velocity 
petential and then differentiating the results along the 
desired directions to obtain the desired components. 
This procedure is especially useful in the thin-airfoil 
theory, where the complete velocf_ty field may not be 
required. _ 

Adopting the foregoing procedure, one may write 

Since u is proportfonal to the pressure, such a solution 
corresponds to a point source in the pressure field. The 
solution for an oblique line source may be obtained by 
Integrating for tho effect of a row of point sources along 
the line y = mx. It wFl1 be shown that such a line source 
satisfies the boundary condition for a thin wedge-shape 
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body. ?.'his solution, as well as other expressions relating 
to oblique airfoils, can be most conveniently expressed 
by referring to the oblique coordinates 

X’ =x-my 

Y' = f - m,. 

Z'=fY-ZZ 

(See fig. 1.) It may be shown that if' any function 
f(x, Y, z) is a solution of 

fxx - fyy -f,, =o 

then f(xr, yf, z') is also a solution. In particular, 
the pofnt-source soluti.on becomes 

Xence the integration for the effect of an inclined line 
or sources may be performed directly along the oblfqu6 
x'-axis; thus, for m < 1.0 

u= 

1 coah-1 ~ x' = 

I 
lgtl 

I Ag’ 
t&O 

\I 
- 

2 W-Et) -s 12 - zt2 

(6) 
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..7here 5'1 fs the Foaition of the last source whose Yach 

.cone includes the point (xl, yt, zr> and is given by 

% = x' - \I yf2 + zt 2 

&hen rm anxroaches 1.0 the source line apqroaches 
coincidence with the Each cone, corresponding to a trans- 
verse velocitg component equal to the valocitg of sound. 

For values of m greater than 1.0 the integratfon 
:Tields 

.x t 
u= -Ii cod 

i' 

(7) 
y2 + zt 2 

?t will be seen that in this case I is imaginary. 

The vertical velocity near z = 0, which determines 
the shape of the boundary, may be determined by tite- 
Erating u with respect to x and then differentiating 
the resulting velocity potential with resFoct to z; 
thus (see appendix), 

if z40 and y' < 0. If 9' > 0, 17 = 0. There is 
thus a discontinuity in the vertical velocity of the 
strearilinas when they cross the line scurce at ;v* = 0. 
Par small values of I/m this discontinuity in vertical 
velocity agrees Mth the boundary condition for a simple 
li8dg8 shape bavin g a small wedge angle. (See fig, 2.) 

. 
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If the source strength I is held constant and m 
Is allowed to aaproach zero, the.wedge -angle ultimately 
becomes large. At m= 0 the line source actually 
satfsfies the boundary coxiit-lon for the circular cone 
(reference 61, but it is found that the slope of the 
conical boundary does not agree wFth the slope of the 
streamlines near z = 0 and hence *he theory no longer 
holds. The condition F-9 thus represents the transi- 
tion from an oblique airfoil to a body of revolution and 
will be avoided in the present analysis by restricting 
the formulas to flat bodies, that is, airfoils that are 
thin in both longitudinal and transverse section. 

AIRFOIL OF WEDGE SECTION 

Over the wedge section near the plane z = 0, the 
formula (6) becomes simply 

‘.l = I cosh'l L- 
ivll 

(9) 

denotes the absolute magnitude of 1 = y - mx. 
is thus constant along the radial l?..nes 

X’ - = Constant 
9' 

and is conveniently represented by the variation along d 
line parallel to the x-axis. Figure 2 shows the oblique 
wedge-shape figure corresponding to a line source with 
m< 1.0. In this case the press 

X5 
re 

the interior of the Mach cone 
f;eld is ccnf'ined to 

- yL,z2=x!2,yt2,zt2=0 
and the theory, unlike the Ackeret theory, indicates a 
stagnation point along the leading edge. (fictually, of 
course, the thin-airfoil theory shows an infinite velocity 
at such points,' but this is to be interpreted as a: velocity 
of the order of magnitude of the flight velocity V. The 
pressure to be expected along the. leading edge is the 
stagnation pressure corresponding to the transverse 
velocity component.) 
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dz w Given -g = 7, the wedge angle measured in down- 
stram sections, the source strength must vary with m 
according to 

I ; zz- 

(from equation 7). Then 

if-- -Ill 2 

dz 
dx 

If m exceeds 1.0, the Peadlng edge of the afrfoil 
will lie outside the k%ch cone. In this case 

In the region be-kieen the leading edge and the Mach cone 
cos-l x1 - fs cmstant and equal to rr; 

Is' 1 
hence the pres- 

sure in this region is constant, that is, 

Figure 3 illustrates this result. 
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If m--+03 a semi-infinite airfoil with its leadin; 
edge at ri@t angl8s to the direction of flight is 
obtained; here 

x - my 

= &y5 
.(I?) 

y - mxp + (1 - mq22 

an& y = 2% wherever y.> in. This value agrees 
with the Ackeret theory. 

AIRFOILS BOUNDED BY PLANE SURFACES 

The distribution of pressure over symmetrical air- 
foils bounded by plane surfaces can be obtained by super- 
lmgosing the pressure fields for several line sources and 
s.tnks. This superposition is greatly simplified by the 
conical form of the pressure field for each single line 
source. Because of this form the whole distrfbution in 
the plane z = 0 is, in effect, represented by a single 
curve. If the velocity field for a line source beginning 
at the origin (equation (6)) is denoted by u and that 
beannine; at 7 = -1. is aenoted by u-1, and so forth, 
the sum 

u-l - u-t1 

represents the velocity over a plate of uniform thickness 
havin 

& 
a beveled leafing edge of constant width. (See 

fig. .> Similarly 

u-1 - 2u -I- u+1 

represents the pressure ,field for an airfoil having 
diamond-shape cross sections. 

The superposition required for several sources or 
sinks can be accomplished by manipulation of a sinc2.e 
curve if it is rem8mbered that u is a function of the 
ratio X/Y l 

Figure 4 illustrates this process for a 
source and a sfnk. In terms of the ratio X/Y the 
separation of source and sink and hence the scale of the 
chord length continually dimintishes with increasing 
distance from the root seution. 



At large distances from the vertex (x'+cu) ';he 
e.~rssslon (for. n< 1.0) 

-1 x’ + 1 
u-l - u+~ = cash -1 xl-1 

cash 
ts' +q 

( 16) 

Is found to approach the value 

logy' -m 
y* +m 

= 2qo 
c 1 

5 

where G is the Legendre function (see reference 6). 

In th8 thbl-Ei??fOl~ kh6'OX'y for Spastic SlJ8edS ft 
can be shorn that if 

then 

U CC 4n(x> 

since NeumannIs formula (reference 7, p. 116) 

(17) 

may be interpreted &s the integration for the velocity 
distribution due to an array of sources of strength 

07) 
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along the chord of the airfoil. The exprlssion .:lo(yt/m) 

of equation (1.7) thus represents the subsonic presswe . 4 
distribution over the beveled edge. 2 

At the root section (y = 0) only the for%rd source 
need be considered,sLnce the airfoil surface is ahead of 
the Mach cone. originating at the rear 3ourm. 118I?e 

x+1-my 
u-l - U+l cc cash-1 

I Y- m (x f 1) 1 

cc cash -1 1 m (21) 

and the pressure over the root section is thus constant, 
as Fiven by the Ackerat theory, but is altnrod ir ma@IftUd8 
by thz obliquity. 

The oblique wing Lying behind the Nach lines thus 
shows the dckeret type of pressure distribution over the 
foremost section and a progressive change alon the sge.n 
Tram this distribution to the subsonic type of distri- 
bution. Since the subsonic type of distri;31&ion shows 
no pressure Crag, there is a cont.Lnuoua falling or'f of 
tha pressure draq v;ith increasing distance from t&o root . 
section. The pr'sssure drag of the oblique v?+ag thus arises 
.:Ytief'ly on the foremost section, and it; follows that the 
3.?ag coefficient of the mfng as a whole diminfshos %ith . 
kicr5asir-q aspect ratio. -tt will be.shown subsequently 

*Similar7-y, if P,(g) dg is taken as the chordwise 
d!.sCributi.on.of vorticitg, 

The first of this series of airfoils is the camber sha:~c 
curved to smport a unifo;rm L'oad. 

12 
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that the effect of cutting the wing off along a line 
Y = Constant to moduce a downstream tip causes a rsduc- 
tfon of the pressure drag on the adjacent sections, and 
if the aspect ratio is sufficiently high, the pressure 
drag in the region of the downstream tip may actually be 
negative. 

If the wing lies ahead of the Mach lines cm > 1.0) 
the Ackeret type of pressure distribution occurs and a 
pressure drag arises over tne whole length. In this C&S8 
both u and w are constant over the beveled part at a 
distance from the origin. 

The treatment thus far applies to semi-infinite 
cylindrical wings having root sections near the origin. 
A complete swept-back wing may be obtained by the addi- 
tion of a symmetrical or conjugate arrangement of source 
lines below the x-axis. Values of u 
arrangement may be denoted by ??. 

for this conjugate 
Figures 2 and3 show u 

for a single inclined source and figure 5 shows calculated 
nressure distributions at several ssctions along the span 
for a complete swept-back airfoil having beveled secticns. 
The addition of the conjugate source lines doubles the 
pressure at the root section, but this interference effect 
falls off rapidly along the span. 
in figure 4, 

It is noted that, as 
the most significant change in pressure 

distribution occurs along the expansion wave originating 
at the trailing edge of the root section. Figure 6 shows 
the variation in pressure drag along the span for this 
airfoil obtained by integrating the chordwise components 
of pressure at the different sections. 

The addition of a reversed source-sink distribution 
havixq its origin displaced to a point 02 (see fig. 7) 
will show the effect of cutting the wing off in a direc- 
tion par-allel to the direction of flight. It will be 
evident that the effect of such a tip is characterized 
by the subtraction of the curves u and is limited to 
the area lying within the sach cone-which originates at 
the tip. It is interesting to note that pressure distri- 
butions of the Ackeret type, except reversed in sign, 
are added near the tip; hence, cutting the tip off in 
this manner reduces the drag of adjacent sections. 

?igure 8 shows the pressure distributions over a 
rectangular airfoil having a leading edge at right angles 

. 
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tq the flow. In the triangular area ahead of the Mach 
cones originating at the tips the pressure Is constant, 
as Aivan by the kckeret theory, whereas behind these htach 
cones the pressure drops sharply. 

AIRFOIL OF BICONVEX SECTIONS 

Curved surfaces require a contLnuous distribution 
of sources and sinks alined with the generators of the 
surface, Each elementury source-line causes an infini- 
tesimal change in direction of the surface and hence the 
slope at any point may be obtained by addfng up the 
effects of all sources ahead of that rsoint. Thus 

(22) 

For airfoils of constant chord, m will be a constant 
and the integrations can be performed without difficulty. 
The simplest case is that of constant curvature,which 
loads to profiles- formed from circular arcs. 

In order to obtain a biconvex proffle it is necessary 
to introduce finite sources of strength sufficient to form 
the desired angle of intersection of the arcs at the 
leading and trailing edges, together .with a uniform dis- 
tribution of sinks along the chord line between the two 
sources, These profiles thus require a uniform distri- 
bution of sources or sinks, which may be obtained by 
integrating the elementary solution for the line source 
(equation (6)). The resultin: solution may be denoted 

1 by -u B end is, for m < 1, 

14 



ax 
+= 1 

I 

cosh’l 5 - my &g= 
f~ - mE.i 

1 
.( 

dl- sy cosyl x- 'yt cosll-l 
m PI m ) !y'l, (3) 

c;wt 

Inasmuch as the elementary solution u is of the 
the integrated solution aspears in the form 

1 5u=yxg; 
0 , 

and wJ.11 be conveniently represented by a curve typical 
of all spanwise stations, namely, 

1 -u = g(g 
YD 

For a closed profile intersecting the X-axis at the 
points fl there is obtained w 

t u = Uwl + u+1 - y 
( 

-L 
y3 -1 - $41 

> 
(24) 

This superposition may be accomplished conveniently by 
transposfng and adding the tpical curves u and L 

YD ' 
as shown in figure 9. 

It will be found that if m is less than 1.0 the 
velocity distribution anproaches, with increasing distance 
from the root section, the form given by the subsonic-flow 
theory for an airfoil of biconvex section, that is, 

(25) 
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At the root sccl;ion, hot'lever, the form is s9mply that 
:;iven by tha Llckerct %fr.zory fcJF a straight airfoil, 
alChcugh the values we reduced in mamitude by the 
factor -1 2, zosh ~ . 

For tapered aLT;oils ho'uh m and 1 will be 
i'unctiom of 5. (See e~uk.-tf,on (A+).) It ia easily seen 
that closed sw9'aces can bs obtained mly on the cmdi- 
t'lcn that.ths lke 3ourc38 have a cmmon point of inter- 
~:3C‘L;lorl, as in f‘9gure 7, If i2G.s ,7.oint is denote4 bp 
q)l 30 

The surface obtained 9s me generated by a line sassixg 
Lhr*ough the fixed point x0, Yo md hence is a conical 
surface. 

The yessure ovw the tapered airfoil. requb-es the. 
il?te~~~fiOll Gf 

16 



. v:here 51 is the location_ of the vertex of the airfoil and 

In concluslors it should be rrotsd that the pressures 
have bem derived fo? an airfoil trmsfo-med according 
to equatfons (2). The pressux+s at correapond5rig p&its 
of the orf_ginal airfoil are to be ob+,afned by dividing 
by IS-1. 

Laqley Ulenorial Ammautical Laboratory 
Fatfonal Advisory Cotittee for Aeronautics 

Langley Fi~,rd, Ya,, Eiay 23, 19&6 
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For It!. < 1.0 the dfsturSance is zero outside the 
ikch cone md the range of titegrstio?z should be e::tended 

only from XL = &2+27 to x, that is, 

ti 

cash-l -q%i dx (Al) - 
2 f z2 

(for ur,it source strength}. P~~rt?iar~ore, 

!I dx = 

s3.nc.e the integrand 1s zejro at the lorer 1iM.t. 

and hence the intscral 

(A.21 

mmt be evaluated. 



First ft fs noted that the integral vanishes 
with z except in the neighborhood of the Mach cone 

(J \ xl2 12 - 21-2 = 0 
line sOuCce 

1 and in the neighborhood of t e 
(91 = 0). Near the Mach cone yr3 + 9 2' -32, 

so thE?t 

-xfzf dx -z dx 

( yf2 + 292 - 3712 - .I2 

Since the latter Utegral aoproaches zero with z, there 
is no contributfon to equation (&) in the region of the 
Mach cone. On the other hand, near the line source yf+O 

xl2 - p' - z12 --+xf; 2 hence, as 2 r-+0, 

J 
\ -x’z’ dx + -e’ 

( ,\I s dx=$ tan -1 Y1 Ff collstant WI 
y'2+Zr2 xr2, r2,zr2 Y Y r2+z12 

The value of the integral changes from 0 to n in crossing 
over tha lfne source at y'= 0 and is Tosftlve or negative 
depending on whether zf approaches zero from the posi- 
tive or. negative side of the xy pl+ne. Hence 

-- 
w = *z dl - ItI2 

If m is greater than 1.0 

U = cog 

-l @k 

(AT’) 
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snd the floi~ disk urbanca extends outside the Mach cone 
to a Revlon bounded by plane waves extendlP1g from the llno 
source -&d tangent to the Mach cone. (See fig.. 12.) Ttd 
equation of ,these pianos can be aasl>J shown i;o be 
-it- 12 + zr2 = 0; hones f or 
];.ntogration 3.s @teen bp 

m > 1.0 the lowor liz-5.t of 

. 

Then 

In thfs case u does not 20 to zero at the lower l&&t 
but is equal to n. In all other regions, ~OIYOVCT, 
%?~?a integral a?proachos zero u.-.-iformly with z as in the 
preceding case; hence 

1:: 
b 

w =--- 

i 

i3X, 

a:: 
u dx = uz - = 

bz 
2: 7, 

23 berorc. 

20 



ZACA TE No. 1107 

1 -* Jones, Bobsrt T.: ';;ling ?Lar, Forms for &$-8p8ed 
night. KACX TN MO. 1033, 19&i. 

2. Ackeret, J.: Air Forces on Ail-foils Moving Faster 
Than Sound. I?ACA T'M MO. 317, 1925. 

/. Jones, I?obert T.: z PropePtioS Of LOW-&~8Ct-~atiO 
Pohted F';rinczs at Sneeds below and above the SFeed 
of Sound. k4c~ TX~O. 1032, 1946. 

4. Busernarin, Adolf: 
s t?zmung 

Ixftilftesll?lale k8g8Pfg8 UbePSChall- 
Sonderdruck aus dem Jahrbuch 1942/43 der 

Deutschen Akademie der ixftfahrtforschung. 

5. Prandtl, L,: General Conzideratims on the Flow of 
Co-rqressible Fluids. Ml"lCA TM 3:o. 805, 1936. 

6. van I&&n, Theodor, and Hoore, Norton B.: Resistance 
of Slender Bodies Koving utth Supersonic Velocities, 
with Sxectal Ref3P8EC8 to pr-ojectifes. Trans. 
A .s.x.s., ~01. a, 220. 23, a~. 15, 1932, pp. 303-310. 

7. Jchnke, d&gene, and tide, Pyitz: Tables of F'xmctions 
wi+uzi Formulae and Curvas. Rev. ed., Dover Publica- 
tfon3 (Zem York), 1943, pp. 107-117. 



NACA TN No. 1107 

. 

-. . 



MACA TN MO. 1107 Fig. 2 

u=cosh? =I 
NATIONAL ADVISORY 

6=coSK’~, 

COMMITTEE FOR AERONAUTICS 

Figure 2 .- Pressure fiel& fo;uoblique 
wedge where ma. q = v . 
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Figure 4:Superposition ofsburce and sink to obtain 
plate with beveled edge. 
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Sec’tion A--A 

NATIONAL ADVISORY 
COMMITTEE FOR AERONAUTICS 

Figure 5.- Variation. of pressure distribution along rspan 
of swept- back wing. matan 300. 

L 



. I 

3 

2 

n 

Slope a dz/dx 
-- 

Section parallel to 
flight velocity 

“0 I 2 3 4 ,5 6 

2’ 
Distance from root section in ‘4 chord lengths 

Roo section NATIONAL ADVISORY 
COMMlllEE q AERONAUTICS 

. 

Figure 6Abriotion of dreg coefficient with distance from 
root sectian for swept-back wing. Wedge section. 
M = 1.4. 

. 

CTI 
l- 

=I . 

or 



NACA TN No. 1107 Fig. 7 

Y 

/ / / / 

NATIONAL ADVISORY 
COHWITTEE FOR AERONAUTICS 

-.-- -- 
X 

+ 

Figure 7. - Addition of reversed source-sink 
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Figure 8. - Pressure distribution over airfoil of 
rectangular plan form. 
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Figure IO.- Pressure distribution at 
different points along span. Biconvex wing. 
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Figure II .- Variation of drag coefficient with distance 
along spon for wings of biconvex section. M = 1.4, 
$40 percent. 
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Figure 12.0 Evaluation of equation (A8) for m > 1.0. 


